Comparison of manganese oxide nanoparticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells.
نویسندگان
چکیده
Due to their physicochemical characteristics, metal oxide nanoparticles (NPs) interact differently with cells compared to larger particles or soluble metals. Oxidative stress and cellular metal uptake were quantified in rat type II alveolar epithelial cells in culture exposed to three different NPs: manganese(II,III) oxide nanoparticles (Mn(3)O(4)-NPs), the soluble manganese sulfate (Mn-salt) at corresponding equivalent doses, titanium dioxide (TiO(2)-NPs) and cerium dioxide nanoparticles (CeO(2)-NPs). In the presence of reactive oxygen species an increased apoptosis rate was hypothesized. Oxidative stress was assessed by detection of fluorescently labeled reactive oxygen species and by measuring intracellular oxidized glutathione. Catalytic activity was determined by measuring catalyst-dependent oxidation of thiols (DTT-assay) in a cell free environment. Inductively coupled plasma mass spectrometry was used to quantify cellular metal uptake. Apoptosis rate was determined assessing the activity of caspase-3 and by fluorescence microscopic quantification of apoptotic nuclei. Reactive oxygen species were mainly generated in cells treated with Mn(3)O(4)-NPs. Only Mn(3)O(4)-NPs oxidized intracellular glutathione. Catalytic activity could be exclusively shown for Mn(3)O(4)-NPs. Cellular metal uptake was similar for all particles, whereas Mn-salt could hardly be detected within the cell. Apoptosis was induced by both, Mn(3)O(4)-NPs and Mn-salt. The combination of catalytic activity and capability of passing the cell membrane contributes to the toxicity of Mn(3)O(4)-NPs. Apoptosis of samples treated with Mn-salt is triggered by different, potentially extracellular mechanisms.
منابع مشابه
P-73: The Effects of Manganese on Testis Structure and Sperm Parameters in Adult Mice Exposed to Formaldehyde
Background: Formaldehyde (FA) as a ubiquitous environmental pollutant is extensively used in hospitals, laboratories and many industrial settings. FA exerts adverse effects on testicular structure and sperm param eters through increasing oxidative stress. Manganese, a well-known antioxidant, can inhibit oxidative stress damages. The aim of this study was to investigate the influences manganese ...
متن کاملToxicity of Manganese Titanate on Rat Vital Organ Mitochondria
The TiO2, which is a main material in the field of photocatalytic reactions, includes rutile and anatase phase. Titanium dioxide has possessed notice due to its promising applications in the environmental photocatalytic degradation of pollutants of organic compound in waste water and utilization of solar energy. The nanosized manganese titanate (pyrophanite) MnTiO3 was collected by oxidation of...
متن کاملToxicity of Manganese Titanate on Rat Vital Organ Mitochondria
The TiO2, which is a main material in the field of photocatalytic reactions, includes rutile and anatase phase. Titanium dioxide has possessed notice due to its promising applications in the environmental photocatalytic degradation of pollutants of organic compound in waste water and utilization of solar energy. The nanosized manganese titanate (pyrophanite) MnTiO3 was collected by oxidation of...
متن کاملCatalytic Decomposition of Hydrogen Peroxide in the Presence of Synthesized Iron-Manganese oxide Nanocomposites via Different Methods
The special application of iron-manganese oxide nanocatalysts has been investigated in decomposition of hydrogen peroxide. In this research, iron-manganese oxide nanocomposites were synthesized by co-precipitation, sol-gel and mechanochemical methods using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared on the variou...
متن کاملاثر ضدرگزایی نانوذرات اکسید منگنز بر غشای کوریونوآلانتوئیس جوجه
Background and Objective: Recently, it has been shown that some naked metal nanoparticles have angiogenesis potential. In the present study, the anti-angiogenesis property of bare manganese oxide (MnO2) nanoparticles was investigated on chicken chorioallantoic membrane (CAM). Materials and Methods: Fifty hen fertilized eggs were divided into five groups (n=10); the control and experiment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology letters
دوره 205 2 شماره
صفحات -
تاریخ انتشار 2011